Application Scaling for Cloud Computing

Using multicore processors to build intelligent application delivery

switches for next-generation data centers

Large data centers such as Google, Yahoo, and Salesforce.com use application delivery
switches to load balance incoming network traffic. This traffic comes from multi-Gigabit
data streams to more than 100 application servers running hundreds of virtual machines.
Handling this traffic demands a very high-performance, intelligent switch capable of
processing thousands of compute-intensive Transmission Control Protocol (TCP) and

Secure Sockets Layer (SSL) operations per second.

The strategy employed by many application delivery switch providers like F5, Cisco, ACE,
and Citrix to solve this processing throughput problem leverages the performance
advantages of embedded multicore processors with hardware acceleration. This case
study describes how TCP and SSL can be successfully implemented on a multicore

processor to provide scalable cloud computing.

The Processor Performance Challenge

Among the most compute-intensive tasks application delivery switches must perform
are TCP and SSL. TCP enables the end-to-end transport of data between the user
(browser) and the website (web server). Its primary tasks are to establish a connection
between the two end points, transfer data in an orderly manner, and terminate the

session when complete. In addition, TCP manages the size of the data segment, the flow

www.University.Cavium.com Page 1

of data, and the speed at which data is exchanged, as well as any network traffic

bottlenecks.

Another key technology most application delivery switches must contend with is
Transport Layer Security (TLS), or the older Secure Sockets Layer (SSL). TLS/SSL is used
by HTTPS to allow secure, private transmission of data, such as credit card or bank
account numbers, or other personal information over the Web. A secure, https site is

identified by the yellow “lock” icon in the upper left hand corner of the browser.

Processing TCP requests and establishing secure sessions put a significant demand on
processors. A high-level overview of how TCP and TLS work will give the reader an
appreciation for the brute processing force that application delivery switches need to

perform these tasks and maintain an acceptable level of service.

Inside TCP

TCP protocol operations are divided into three phases: Connection Establishment phase
where connections are established in a multi-step handshake process; Data Transfer
phase; and Connection Termination phase which closes established virtual circuits and

releases all allocated resources after data transmission is finished.

www.University.Cavium.com Page 2

CONMECTISYN (Step 1 of the 3-way-handshake)

cram e e URLSUAD EvERE g
———— - clientreceiver path ("'"1_..(. SO
—= sanersender path LISTEN/- A CLOSE-
: CLOSE/-
Step 2 af the 3.way.handshak IS Y H-+A
(Step way «han e) SYWSYN+ACK LISTEN
A
RSTi- SENDISYN
RECEIVED | g SYRUSYNSACK (SiRultaneous open) o SENT
Data exchange occurs
= | EstaLisHED | e
B " (step 3 of the 3.way-handshake)
: CLOSE/FIN
: CLOSEIFIN FIM/ACK

| Active CLDS*

|Fassive CLDS$

Y
FINWAITL |

i

| = CLOSING
: FINFACKIACK, | i

i ACKI- I

Y

I FIN WAIT 2 f' TIME WAIT
i FINJACK

i

Tirmm@aut

|

(Go back to start

¥
I CLOSE WAIT I

CLOSE/FIN

Fig. 1 For a more detailed description of TCP, visit

http://en.wikipedia.org/wiki/File:Tcp state diagram fixed.svg

In the connection phase, the server first binds to a po

This is called a passive open. Once established, the cli

rt to open it up for a connection.

ent can initiate an active open by

sending a SYN to the server and setting the segment’s sequence number to a random

value. The server then replies with a SYN-ACK and the acknowledgement number is

reset to one greater than the received sequence num

ber. Upon receipt of the server’s

SYN-ACK, the client sends an ACK back to the server. The sequence number is reset to

the received acknowledgement value and the acknowledgement number is reset to one

more than the received sequence number. Now acknowledgements have been received

by both parties and data can be transferred over the connection.

www.University.Cavium.com

Page 3

To ensure reliable transmission, TCP employs a sequence number to identify every byte
of data and its order. This allows the data to be reconstructed in the correct order even
if it becomes disordered, fragmented, or some packets are lost. If packets are lost, TCP
can request the retransmission of packets. In order to prevent the sender from sending
data too fast for the TCP receiver to reliably receive and process it, TCP uses flow control

protocol.

Finally, each side of the connection terminates its side independently by transmitting a

FIN packet, which the other end acknowledges with an ACK.

Inside TLS

At a high level, the SSL/TLS server and client agree on the version of SSL protocol to
employ, select cryptographic algorithms, authenticate each other by exchanging and
validating digital certificates, create a shared secret key, and then use that key for the
symmetric encryption of messages between the two. TLS requires even more processing

power than TCP, particularly for the key exchange operation, as described below.

www.University.Cavium.com Page 4

SSL Client SSL Server

(1) "client hello”

Cryptographic information

(2) "server hello”

-
(3 CipherSuite
Verify server Server certificate
certificate. "client certificate request" (optional)
Check
cryptographic
parameters (4) Client key exchange

Send secret key information
(encrypted with server public key) (6)

(5) Send dient certificate Ve e
certificate
(7) Cliert “finished” , (if required)

(8) Server “finished”

(9) Exchange messages

>
(encrypted with shared secret key)

Fig. 1 Flow chart of SSL handshake

An SSL/TLS session begins with an exchange of messages called the SSL/TLS handshake.
The handshake enables the server to authenticate itself to the client by using public-key
techniques, and then allows the client and the server to cooperate in the creation of
symmetric keys used for rapid encryption, decryption, and tamper detection during the
session that follows. SSL protocol uses both public- and symmetric-key encryption.
Symmetric-key encryption is significantly faster than public-key encryption; however,

public-key encryption provides better authentication techniques.

www.University.Cavium.com Page 5

The key exchange operation within SSL/TLS relies on asymmetric encryption techniques
(commonly Diffie-Hellman or RSA) to generate a shared secret key, which avoids the key
distribution problem. The SSL client sends a random byte string that enables both the
client and the server to compute the secret key to be used for encrypting subsequent
message data. The random byte string is also encrypted with the server's public key.
This key exchange operation is the most processor-intensive step within SSL—made
more intensive with hundreds or thousands of key exchanges being established

simultaneously within a large eCommerce site.

Once the symmetric keys have been established, bulk transfer of encrypted data can be
performed securely. The encryption operation, like the key exchange operation, is a

processing-intensive process that can impact performance.

Strategy for Handling TCP and TLS in an Application Delivery Switch
In the past, developers of application delivery switches relied on single-core processors.
More recently, it became clear to developers that the single-core approach lacked the

scalability needed to meet increasing processor demands.

The path forward for application delivery switches was multicore processors (i.e.,
multiple cores on a single processor) that could divide compute tasks across many cores.
Multicores have two significant advantages over a single core. The first is higher total
processing power at lower frequencies. At one execution step per cycle, for example, a
single-core processor operating at 2 GHz is capable of processing 2 billion steps per
second. But a 16-core processor operating at just 750 MHz on each core (a fraction of
the single processor) can process 12 billion steps per second—while using less power

and generating less heat.

The other advantage multicores have is the ability to parallelize tasks. Application

delivery switches manage many TCP flows and TLS/SSL sessions simultaneously, so there

www.University.Cavium.com Page 6

is inherent parallelism. Each core can be assigned to process a flow or session and

multiple cores can process multiple sessions/flows in parallel.

Limitations of Multicore

Many multicore implementations today utilize a general purpose processor with two or
four cores. A simultaneous multi-processing operating system (SMP OS) manages and
schedules processing among the cores. Software is used to partition the data into
threads. The SMP OS then schedules the execution of these threads. Shared data
structures and serialization among the threads are handled through semaphores or

through some software locking mechanisms, such as spin-locks.

Migrating from a single core to two or four cores does increase performance; however,
the marginal increase quickly drops as the number of cores increases. A plot of overall
performance against the number of cores utilized reveals that performance plateaus

and then even decreases as the core count increases further.

One of the reasons for this performance limitation has to do with scheduling. SMP
systems rely on the OS to schedule all the execution. The overhead of scheduling and
managing all the program threads and processes increases as more cores and more

threads are scheduled.

In addition, SMP OS preemptively swaps out execution threads and swaps in other
threads, so that all the threads make forward progress based on the set of priorities
managed by the SMP OS. On a multicore system, the SMP OS swaps threads in and out
with all the cores as execution resources. For example, a thread can be executing on
core x for some number of cycles, get swapped out, and later resume execution on core
y. When this thread was executing on core x, a sizable portion of its working data set
was cached within the core x cache. When it was swapped out and later resumed

execution at core y, the related cache content in core x became useless. Moreover,

www.University.Cavium.com Page 7

when it resumed execution on core vy, it experienced additional cache misses initially.
Such SMP OS behavior impacts cache performance and reduces the overall application

performance.

Another source of significant overhead in the SMP multicore model is connected with
synchronization and serialization through semaphores and spin-locks. Semaphores and
spin locks are the most common mechanisms used to protect critical sections in the
code, to protect shared data structures, to ensure atomic execution sequence, etc.
When multiple threads compete against the same lock, the threads that lose will simply
continue to compete until they get the lock. Progress is stalled and bus bandwidth is
consumed in the meantime. As more cores and threads are deployed, they compete

against one another, decreasing overall performance.

To allow multicore processing to truly scale to satisfy the needs of high-end application
delivery switches, developers had to find ways to reduce overhead related to SMP OS

scheduling, synchronization, and serialization.

Optimized Multicore Processors

The latest generation of multicore processors is ideally suited for demanding
applications like application delivery switches. Specifically designed for low power and
high density, processors with up to 16 integrated cores are currently available, with 32

cores reaching the market soon.

Coordinating tasks efficiently among many cores could be an arduous challenge for
software developers. The latest multicore processors minimize software development
complexity by implementing an industry-standard Instruction Set Architecture (ISA),
such as MIPS64. They also incorporate a number of hardware features and

optimizations that facilitate performance scaling—even when many cores are deployed.

www.University.Cavium.com Page 8

One of the most important of these features is hardware scheduling. By recognizing
flows and scheduling the processing of packets to individual cores, the hardware
scheduler eliminates the need to run an SMP OS on these cores. The result is no SMP OS

scheduling overhead.

In addition, the processing is left to run to completion, rather than swapping it in and
out. Cache performance is maximized, while overhead from swapping processing tasks
in and out is minimized. This approach is often described as running on bare-metal,
because an OS is not utilized on these cores. Because the scheduler can recognize flows,
it can also ensure that packets belonging to the same flow are processed in the correct
ingress order. In addition, processing sequences requiring atomicity can be scheduled so
that the scheduler can guarantee atomic operations rather than having software
maintain atomic sequence. With the task scheduler maintaining packet order and
atomic sequences, there is no need for locking or synchronization/serialization, which

accounted for a large portion of overhead in earlier multicore implementations.

Another key component of the latest multicore processors is integrated application
hardware acceleration engines that streamline TCP protocol processing, security
processing, and content processing. While earlier multicore processors performed these
functions in software, newer multicore processors use acceleration engines to offload
many mechanical or compute-intensive tasks, providing significantly higher
performance at much lower power consumption. In addition, hardware acceleration,
such as packet buffer management, can eliminate atomic sequence for managing

buffers in a linked list.

Offloading a process that involves atomic sequences eliminates the need for software
locking. For example, a hardware packet buffer manager can allocate and de-allocate
buffers. Software just performs a simple read to allocate a buffer and a simple write to

de-allocate. Without such hardware, software would implement a shared buffer linked

www.University.Cavium.com Page 9

list. In this case, multiple read/write transactions are needed to take a buffer out of the
shared linked list, and re-insert a buffer. These transactions need to be atomic, because
the linked list is a shared resource to all the execution threads. As this example
illustrates, hardware offload not only provides an efficient implementation, but also
helps multicore performance scaling by avoiding software solutions that would require

locking.

Citrix NetScaler
A — Application Delivery Solutions

slow business. Introducing

q m j Citrix NetScaler
MPX10500 & MPX12500

Take control of application deliver
and take care

About Cavium Networks

Cavium Networks is a leading provider of highly integrated semiconductor products that
enable intelligent processing in networking, communications, wireless, storage, video
and security applications. Cavium Networks offers a broad portfolio of integrated,
software-compatible processors ranging in performance from 10 Mbps to 20 Gbps that
enable secure, intelligent functionality in enterprise, data-center, broadband/consumer
and access and service provider equipment. Cavium Networks processors are supported
by ecosystem partners that provide operating systems, tool support, reference designs
and other services. Cavium Networks principal offices are in Mountain View, CA with
design team locations in California, Massachusetts and India. For more information,

please visit: http://www.caviumnetworks.com.

www.University.Cavium.com Page 10

